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Abstract: The use of sensitive animals in toxicological studies tends to be limited. Even though
cell culture is an attractive alternative, it has some limitations. Therefore, we investigated the
potential of the metabolomic profiling of the allantoic fluid (AF) from ex ovo chick embryos to
predict the hepatotoxicity of valproate (VPA). To this end, the metabolic changes occurring during
embryo development and following exposure to VPA were assessed using 1H-NMR spectroscopy.
During embryonic development, our findings indicated a metabolism progressively moving from
anaerobic to aerobic, mainly based on lipids as the energy source. Next, liver histopathology of
VPA-exposed embryos revealed abundant microvesicles indicative of steatosis and was metabolically
confirmed via the determination of lipid accumulation in AF. VPA-induced hepatotoxicity was
further demonstrated by (i) lower glutamine levels, precursors of glutathione, and decreased β-
hydroxybutyrate, an endogenous antioxidant; (ii) changes in lysine levels, a precursor of carnitine,
which is essential in the transport of fatty acids to the mitochondria and whose synthesis is known to
be reduced by VPA; and (iii) choline accumulation that promotes the export of hepatic triglycerides.
In conclusion, our results support the use of the ex ovo chick embryo model combined with the
metabolomic assessment of AF to rapidly predict drug-induced hepatotoxicity.
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1. Introduction

The use of animals, especially mammals, for scientific purposes dates to the time of
Aristotle, who dissected various animals to study their anatomy and physiology. Today,
animal welfare has become a societal debate, increasing the pressure to minimize animal
testing. Thus, experimenters are required to apply the 3Rs rule: replacement, reduction,
and refinement [1]. Refinement consists in improving experimental protocols, Reduction
makes it possible to choose suitable experimental strategies and, finally, Replacement offers
alternative methods such as the use of in silico, in vitro, or less sensitive animal models.

In toxicology, alternative methods for assessing the potential toxic effects of drug
candidates are already used in routine, including some in silico (QSAR) and in vitro ap-
proaches such as the mandatory Ames and hERG assays which assess mutagenesis and
cardiotoxicity, respectively. Although very efficient in terms of prediction and performance,
these methods often remain limited due to the loss of the 3D architecture of the tissues they
simulate and also the lack of organ crosstalk.

The “omics” technologies were more recently introduced, particularly during the
evaluation in rodents. Among them, metabolomics draws up the metabolome of individ-
uals by global analytical methods such as proton nuclear magnetic resonance (1H-NMR)
spectroscopy and mass spectrometry (MS). Many parameters can influence an organism’s
metabolome, such as diet, the development of a disease, or exposure to chemicals such as
drugs [2,3]. Of interest, the COMET initiative successfully demonstrated the potential of
metabolomics in drug development [3].

Metabolites 2023, 13, 721. https://doi.org/10.3390/metabo13060721 https://www.mdpi.com/journal/metabolites

https://doi.org/10.3390/metabo13060721
https://doi.org/10.3390/metabo13060721
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com
https://orcid.org/0000-0001-9706-2045
https://orcid.org/0000-0002-4440-2795
https://doi.org/10.3390/metabo13060721
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com/article/10.3390/metabo13060721?type=check_update&version=1


Metabolites 2023, 13, 721 2 of 15

For several years now, the chick embryo and its chorioallantoic membrane (CAM)
have gained interest in various sectors including developmental biology and toxicological
studies [4–7]. Chick embryo usually develops in 21 days in a process that can be suspended
by keeping the fertilized egg at 10 to 15 ◦C and resumed by incubating the egg at 37 ◦C [8].
The organs are formed very early in the chick embryo and are functional when hatching.
The digestive system, for example, develops within the first days [9]. The liver has a highly
organized structure, consisting of parenchymal cells and bile duct epithelial cells, as well
as sinusoidal endothelial cells. Hepatic enzymes, such as transaminases, are expressed and
active from embryonic day 8 (ED8) [10]. The allantois appears on ED3 of incubation owing
to the evagination of the ventral wall of the hindgut. This vesicle serves as a reservoir for
waste products excreted by the embryo [11,12]. However, the allantoic sac is an extension
of the embryo’s intestine capable of absorbing nutrients. In addition, the allantoic fluid (AF)
also contains some proteins generally found in yolk and albumen such as ovotransferrin,
albumin, ovalbumin, lysozyme, and apolipoproteins. AF actually serves as storage for
important elements used during the last days of embryonic development [13]. The allantois
next fuses with the chorion to form the CAM which facilitates gas (O2 and CO2) exchange
and the transport of calcium from the shell to the embryo.

In order to fill the current gap between in silico/in vitro assays and in vivo mam-
malian tests, which are subjected to increasingly strict ethical regulations, the chick embryo
model could be an interesting option. This model benefits from a low cost, requires little lab
equipment, and makes it possible to rapidly generate reliable results [14,15]. In addition,
there are no ethical regulations regarding non-mammalian organisms. Indeed, the Institu-
tional Animal Care and Use Committee (IACUC) and the National Institute of Health (NIH)
have established that the chick embryo does not feel pain until ED14 and can therefore be
used for scientific purposes without the approval of any ethics committee [8,12].

Metabolomic analyses via 1H-NMR and MS have already been performed on CAM and
serum to study embryo development with little invasion [5,16]. Likewise, one metabolomic
study was conducted by 1H-NMR spectroscopy of AF and made it possible to identify
61 key metabolites on ED9 [17].

In the context of preclinical toxicological studies, these metabolomic analyses of AF
could help to detect and understand the adverse mechanisms of exogenous molecules,
while overcoming the ethical problems encountered with mammalian use.

In order to evaluate the relevance of this new animal model coupled with the metabolomic
analysis of AF in the risk assessment of chemicals, in the present study we have attempted to
meet two objectives: (1) to characterize the metabolic changes occurring during the develop-
ment of the embryo up to ED13 from the analysis of the AF via 1H-NMR spectroscopy, and
(2) to use the alteration of the AF metabolome as an indicator of VPA-induced hepatotoxicity.

VPA is a drug mainly used to treat epilepsy and other neurological disorders [18–20]
that increase the level of GABA in the brain and inhibit the excitability of neurons [21].
VPA is widely prescribed worldwide despite numerous reported side effects, including
teratogenic effects (spina bifida and anencephaly), neurological effects (stroke and parkin-
sonism), and hepatotoxicity, particularly in young children [21]. The hepatotoxic mode
of action of VPA is mainly related to the disruption of fatty acid metabolism and impair-
ment of mitochondrial function. Indeed, VPA shortcuts the fatty acid oxidation pathway,
sequestering coenzyme A (CoA) normally available for cell functions, while endogenous
lipids are no longer used in β-oxidation (β-Ox). Conventional parameters used to detect
hepatotoxicity in drug safety assessment studies are generally indicative of late stages in
the progression of the disease; therefore, new parameters that can detect the potential for
hepatotoxicity at lower doses and/or at earlier time points are needed. To this end, the
metabolomic approach was applied to different models of VPA-induced liver toxicity. For
instance, a metabolomic fingerprint of steatosis induced by exposing hepatocyte cells to
VPA was established in vitro. Steatosis was indicated by diacylglycerol and triglyceride
(TG) accumulation and carnitine deficiency, while initial toxic responses showed increased
levels of S-adenosylmethionine and mono-acetylspermidine in combination with only a
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moderate increase in TG [22]. In VPA-exposed rodents, early impairments of β/ω-Ox, glu-
curonidation, amino acids, and energy-related biochemical pathways were reported [23,24].
In rats exposed to increasing and repeated doses of VPA, significant changes occurred
from 100 mg/kg VPA and beyond in two urine biomarkers of hepatotoxicity, 8-hydroxy-
2′-deoxyguanosine, and octanoylcarnitine [25]. Finally, in epileptic patients exposed to
VPA, the serum metabolic profile provided clear indications of abnormal liver function,
including changes in glucose, lactate, acetoacetate, VLDL/LDL, choline, creatine, amino
acids, N-acetyl glycoprotein, pyruvate, and uric acid [26]. Those few examples demonstrate
the potential of metabolomics to identify new markers for steatosis progression, to rapidly
profile VPA-induced hepatotoxicity and, more widely, as a promising tool for mechanistic
research of toxicological hazards.

2. Materials and Methods
2.1. Incubation of Fertilized Eggs and Ex Ovo Culture

The fertilized eggs were purchased in batches from a poultry farm (Kwekerij Wyverken,
Halle, Belgium) of White Leghorn laying hens. Upon receipt, eggs were stored at room
temperature before incubation. The embryonic development was stimulated by placing
the eggs in a rotating incubator (TCPS, Rotselaar, Belgium) at 37 ◦C and constant humidity
(60%). This incubator oscillates from left to right to rotate the eggs and reproduce the
natural incubation and prevent the embryo from adhering to the shell membranes. The
eggs were kept in this incubator for 72 h and then (on ED6) the shells were pierced at
the level of the air cell using a mounted needle. The hole was then widened with fine
straight pliers in order to gently empty part of the albumen into a cup without tearing the
yolk. Finally, the embryos and remaining albumen were delicately transferred into the
cup. All this manipulation was carried out under a sterile dome. The development of the
embryos was carried out according to an ex ovo model, i.e., in a synthetic shell surrogate
environment. For this purpose, a plastic cup with its lid was used to contain the embryo.
This cup was finely pierced to let oxygen circulate and was then deposited on a transverse
rod in a cup containing 20 mL of an antibacterial solution (benzalkonium 0.005%). The
cups were then incubated at 37 ◦C and 60% humidity from ED6 to ED13. On ED13, the
embryos were dissected, the livers were removed and stored in Bouin’s solution, and 4 µm
sections were stained with Masson’s trichrome.

2.2. Exposure of Models to VPA

The dose of VPA (Sigma Aldrich, St. Louis, MO, USA; CAS-No: 1069-66-5) used to
expose the chick embryos was extrapolated from doses used in rats and reported in the
literature [27–29].

An amount of 100 µL of VPA solution was deposited on the CAM membrane at ED6
and the dose was adapted according to the weight of the embryo (267 ± 10 mg). The
embryos were divided into 5 groups: 4 groups receiving increasing doses (n = 24 for each
group) (either 50, 100, 200 or 400 µg) and a control group (n = 24) receiving an equivalent
volume of saline buffer.

Then, AF samples were taken daily from ED6 to ED13 using an insulin syringe (U-100)
of 0.5 mm diameter. Those samples, whose volume varied from 50 µL (ED6) to 500 µL
(ED13) depending on the day of sampling, were stored at −80 ◦C before preparation for
the 1H-NMR analysis.

2.3. Sample Preparation and Spectra Aquisition

AF samples were mixed with deuterated phosphate buffer (0.2 M Na2HPO4/0.04 M
NaH2PO4, pH 7.4) and prepared in a mixture of H2O/D2O (80:20; v:v) for a final volume
of 750 µL. The samples were centrifuged at 13,000 G at room temperature. An amount of
50 µL of a 14 mM solution of 3-trimethylsilyl propionic-2,2,3,3-d4 acid (TSP) prepared in
100% D2O was added as an external reference to 650 µL of each supernatant directly in an
NMR tube of 5 mm diameter.
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The samples were analyzed using a Bruker AVANCE 600 MHz spectrometer and a
NOESYPR1D sequence with 256 scans per sample (Bruker BioSpin GmbH, Kontich, Belgium).

2.4. Spectra Processing and Multivariate Data Analysis

The raw spectral data were processed using the MestRe Nova 14.2.1 software (Mestre-
lab Research, S.L, Santiago de Compostela, Spain). Both the baseline and phases were cor-
rected using the automatic functions “Baseline correction” (full auto—Whittaker smoother)
and “Phase correction” (automatic metabonomics), respectively. The water peak region
ranging from 4.20 to 5.50 ppm was suppressed, and the chemical shift of TSP resonance
was arbitrarily set to 0 ppm and used as a reference for the calibration of other spectral
resonances. The spectra were then divided into sub-regions of constant width (0.04 ppm)
using the software’s “Binning” function over the spectral range from 0.08 to 10 ppm. An
Excel file containing all the values of area under the curve (AUC) of those subregions was
generated and the individual value of each subregion was normalized by dividing it by the
total AUC of the corresponding spectrum.

The digitized and standardized data were then analyzed using the SIMCA-P+ software
12.0.1.0 (Umetrics, Umeå, Sweden). Principal component analysis (PCA) was applied to the
data set to identify possible outliers. After their exclusion, a partial least squares regression
(PLS-DA) was applied to the data classified according to their membership of the different
study groups. Based on the best model obtained, the discriminant variables were included
in the list of variable importance plot (VIP) values of the model. Only values with a VIP
score ≥ 1 were considered and further identified mainly from the chemical shift(s) of
the corresponding peaks and their multiplicity. Discriminant descriptors were correlated
to metabolites using the Chenomx NMR suite software (version 8.1.1) and the Human
Metabolome Database (HMDB). A semi-quantification comparison of the spectra was also
used to tentatively detect metabolites that escaped the multivariate analysis.

2.5. Metabolic Signature Validation, Statistical Tests, and Heatmap

The Peak Peaking tool in MestRe Nova software (version 14.2.1), which enables the
detection and calculation of the peak’s AUC was used for the metabolic signature validation.
Statistical analyses were performed using the R Studio software and the R Commander
package. Significance was considered for a p-value < 0.05 (*), a p-value < 0.01 (**), and
a p-value < 0.001 (***). A bivariate nonparametric Wilcoxon test was used to assess the
relative changes in discriminating metabolite levels. Heatmaps were generated using
GraphPad Prism software (version 8.0.2) from areas under the discriminant metabolite
curve, normalized to the total area of the spectrum. The value defined for each cell
corresponds to the relative mean of the metabolite’s AUC compared with the highest mean
(arbitrarily set to 1).

3. Results
3.1. Model Characterization
3.1.1. Fertilization and Viability of the Embryo in Ex Ovo Condition

Fertilized eggs (Figure 1A) were identified by the presence of a vascular disk at the
periphery accompanied by a vascular network at the surface and in the center of the yolk.
The embryo could be discerned by faint body contours and heartbeat. Such characteristics
are lacking in the case of an unfertilized egg (Figure 1B) or when spontaneous abortion has
occurred (Figure 1C); a vascular circle could be visualized but without any body contours
or heartbeat.

The viability (Figure 1D,E) of ex ovo embryos was determined from ED6 (start of the
study) to ED13 (end of the study).

To assess whether the AF sampling could affect embryo viability during the test period
(ED6 to ED13), a ratio between living and dead embryos was calculated, assuming 100%
viability on ED6 (Figure 2A). To this purpose, 13 embryos without any fluid collection
were compared with 24 embryos for which AF was indeed collected daily. Note that those
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embryos with any abnormalities were deliberately removed from the analysis. As shown
in Figure 2B based on a chi-squared test, AF sampling does not impact embryo viability
with, on average and depending on the study day, an 18% increased mortality in the case
of sampling.
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3.1.2. Macroscopic Characterization of the Model

A morphological observation of the ex ovo embryos (Figure 3) not only allows us to
monitor proper development but also to rapidly identify possible abnormalities such as
growth retardation and malformations. From ED3, a vascular circle becomes visible that
is linked through a vascular network (arteries and allantois veins) to the embryo placed
on the surface and in the center of the yolk. The body contours are well delineated in the
amniotic cavity and the heart is beating. The head is curved and close to the heart. As for
the yolk, it is perfectly round and placed on its albumen. On ED4, the vascular network is
further developed, and some distension of the yolk and thickening and enlargement of the
body are observed. The eyes also become visible. These changes are even more pronounced
on ED5 with an additional demarcation of the amniotic cavity, as well as the appearance of
the allantois and forelimbs. From ED6 to ED9, the embryos keep growing and the allantois
accumulates more fluid. The yolk, meanwhile, continues to distend throughout the cup.
On ED7, the hind limbs are formed. On ED10, the use of the yolk as a nutrient source is
noticeable. In addition, the beak and mouth are apparent. Finally, on ED12, the fingers
become visible and plumage shows up on ED13.
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3.1.3. Metabolomic Characterization of Ex Ovo Embryos

The 1H-NMR profiles of AF collected from ex ovo embryos allowed the identifi-
cation of a bench of metabolites (Figure 4) and, consequently, some inference in active
metabolic pathways.
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Figure 4. 1HNMR 600 MHz stacked spectra of AF samples collected from ex ovo control embryos
from ED6 to ED13. BHB: β-hydroxybutyrate.

To define which metabolites were associated with embryonic growth, a comparison
of metabolic profiles was performed on a daily basis using multivariate data analysis
(data not shown). Models were then performed two by two for each day and VIP values
were calculated on ED6. Among them, lactate and β-hydroxybutyrate (BHB) showed
increasing AF concentrations across the study. Conversely, glucose, leucine, and lysine
showed consistently decreasing AF levels from ED6 to ED13. Other metabolites (serine,
glutamine, acetate, choline, and pyruvate) fluctuated throughout the study.

3.2. Metabolomic Evaluation of VPA-Induced Hepatotoxicity

After characterization of the model, ex ovo embryos were exposed to VPA and the
viability and metabolomic AF profiles were determined.

3.2.1. Viability of VPA-Exposed Ex Ovo Embryos

The viability of chick embryos exposed to VPA was determined from dead individuals
during the experimental period. Figure 5A shows that the viability measured in the control
group (n = 24) decreases to 66% on ED13, i.e., 7 days after exposure, but drops to 4% in
400 µg VPA-exposed embryos. This effect is clearly dependent on the dose and duration of
exposure (Figure 5B–E, based on a chi-squared test).
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Figure 5. Viability of embryos (N = 24 in each group) exposed to different doses of VPA from ED7 to
ED13 (A); chi-squared test: Chisq = 6.9; on 1 degree of freedom, p = 0.009 (B); Chisq = 16; on 1 degrees
of freedom, p = 6× 10−5 (C); Chisq = 17.4; on 1 degree of freedom, p = 3× 10−5 (D); and Chisq = 22.3;
on 1 degree of freedom, p = 2 × 10−6 (E).

3.2.2. Metabolomic Evaluation of VPA-Exposed Ex Ovo Embryos

Binned spectra (0.04 ppm stepwise) generated from AF were integrated and numerical
values exported to an Excel table. Then, a signal normalization step was performed,
dividing each 0.04 ppm length descriptor by the total AUC signal of their corresponding
spectra. Normalized data were next integrated in SIMCA-P+ multivariate data analysis
software to highlight possible metabolic differences between embryos which were exposed
to VPA or not. No outlier potentially due to either experimental bias or any technical
issue during spectral acquisition was detected by the principal component analysis PCA-X
initially applied to the dataset. PLS-DA were then performed two by two for each dose
and each day of exposure. From a toxicological point of view, the two highest doses of VPA
(200 µg and 400 µg) showed the most significant results. Figure 6 shows the separation
between ex ovo control embryos and embryos exposed to 400 µg of VPA for 24 h.
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Figure 6. Scores plot of the distribution of 1H−NMR profiles of AF collected from embryos exposed
or not to VPA (400 µg for 24 h).

Matching loading plots of each model display the most influencing descriptors, con-
sidering a VIP value above 1. These descriptors could be related to 18 discriminant metabo-
lites recapitulated in the heatmap based on 1H-NMR metabolite normalized intensities
(Figure 7).
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Figure 7. Heatmap of the relative changes in metabolite levels measured in the AF of embryos exposed
to 200 µg or 400 µg of VPA. A bivariate nonparametric Wilcoxon test was used and significance was
considered for a p-value < 0.05 (*), and a p-value < 0.01 (**). BHB: β-hydroxybutyrate.

Thus, 24 h after being exposed to 200 µg of VPA, significant increased levels of leucine,
isoleucine, and citrate (dose = 400 µg), and decreased levels of acetate and betaine, were
observed in the AF samples. At 400 µg, tri-phasic changes occurred: (1) at 48 h post-dose,
the levels of glycine increased while leucine, isoleucine, and creatine levels decreased
significantly; (2) at 72 h post-dose, the increase in lipids became statistically significant
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while leucine, isoleucine, threonine, and creatine showed a statistically significant decrease;
and finally, at 96 h post-dose, significant and dose-dependent increases in relative lipid
levels, as well as a decrease in acetate, BHB, glutamine, and lysine concentrations were
noticed. Other metabolites such as lactate and creatine tended to decrease while serine,
glycine, choline, and glucose levels tended to increase in AF samples.

3.2.3. Liver Histopathology

Histological liver slides from embryos from the control group were compared with
liver slides from embryos exposed to 200 µg of VPA.

In the liver resected from VPA-exposed embryos, more clear vesicles (20%) were seen
in the hepatocyte cytoplasm (Figure 8) compared with the control group (11%). These
vesicles could be lipid in nature, an assumption that should be confirmed by Oil red O
(ORO) staining.
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Figure 8. Histological sections of chick embryo liver on ED13 of control (A) or from individual
exposed to 200 µg of VPA (B); 40× magnification, Masson’s Trichrome staining. The arrows (→)
denote the presence of cytoplasmic inclusions which could possibly contain lipids.

4. Discussion

Risk assessment of new chemicals has always been a challenge to ensure the safety
of potentially exposed populations. Although the requirements vary according to the
applications, some constants are found such as determining the target organ(s) and defining
whether the effect is reversible and dose dependent. While mammalian tests have long
dominated toxicological studies, they are nowadays limited for various reasons, including
ethics, incompatibility with high throughput screening, and the difficulty of transposing
the findings to the clinic [30].

To meet these new requirements in chemical risk assessment, new methodological
and technological strategies have emerged. Among them, the chick embryo has been
investigated in different areas of biomedical research. This model has the advantage,
according to the competent regulatory institutions, of not feeling pain until ED14 [31].
Another advantage is that the major organs, including the digestive system, develop very
early. The liver, for example, is functional from ED5 [32]. In terms of new technologies,
the metabolomic approach makes it possible to identify signatures that are characteristic
of the induced effects and to infer the metabolic and cell signaling pathways impacted by
exposure to the chemical under evaluation. It can then be verified whether these same
pathways exist in humans or not and, therefore, whether the risk identified in animals
is significant for humans as well. In the field of preclinical toxicology, metabolomics has
demonstrated its full interest [3].

In this study, we intended to evaluate the potential of combining the ex ovo chick
embryo and metabolomics as a predictive tool for chemical risk assessment. The aims here
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were: (1) to characterize global metabolic changes occurring during the development of the
embryo up to ED13 from the analysis of the AF via 1H-NMR spectroscopy, and (2) to use
the alteration of the allantoic metabolome as an indicator of VPA-induced hepatotoxicity.
The results achieved for each of these objectives are discussed below.

4.1. Evolution of the Allantoic Metabolome in Ex Ovo Conditions

The ex ovo model of the chick embryo was selected as an interface between in vitro
cell culture tests, which suffer from the loss of 3D architecture, and in vivo mammalian
tests, which are ethically criticized. This ex ovo model is relatively simple to implement
and inexpensive but requires technical skills. Compared with the descriptions reported
on hatched egg by Hamburger and Hamilton, the morphological changes were somewhat
different in our ex ovo model [33]. Overall, a time lag occurred in the development of
organs and structures. However, the ex ovo embryo remained metabolically competent, as
demonstrated by the changes observed in the level of key metabolites in the AF during the
ex ovo embryo development. For instance, the steady decrease in glucose levels together
with the accumulation of lactate suggest active anaerobic glycolysis. In parallel, fluctuating
pyruvate levels can be explained by different events. Initially, the level of pyruvate increases
by conversion of serine, whose concentration decreases during this phase of development.
Then, pyruvate is transformed into acetyl-CoA, explaining its later consumption. Acetyl-
CoA can, in turn, either be converted to acetate, the increase in which partially coincides
with the discontinuous decrease in pyruvate, or feed the Krebs cycle, indicating here an
active aerobic respiration.

At the same time, the increasing levels of BHB and acetoacetate testify to the impor-
tance of the ketogenic pathway and thus the oxidation of fatty acids in the growth phase of
the embryo. Both metabolites are likely stored for use in later phases of development. Our
results also showed a progressive accumulation of choline and betaine from the breakdown
of lecithin, the main phospholipid of egg yolk. As a methyl group donor, it supplies
glycolysis via phosphatidylethanolamine [34,35].

Finally, there was a significant consumption of certain amino acids such as leucine,
isoleucine, and threonine, which are probably strongly solicited during tissue formation.
Similarly, lysine levels, used for the synthesis of carnitine and biotin, decreased. Biotin acts
as a cofactor in carboxylation reactions during gluconeogenesis, amino acid catabolism,
and fatty acid metabolism [36,37]. It can also supply the Krebs cycle via acetoacetate or
succinate in the case of degradation in the liver. Carnitine facilitates the penetration of
fatty acids from the cytosol to the mitochondria. Conversely, other amino acids seem to
accumulate, such as glycine, which could serve as a storage route for nitrogenous waste.

4.2. Metabolomic Evaluation of VPA-Induced Hepatotoxicity

As already mentioned, VPA is an antiepileptic drug presenting some adverse effects,
including the risk of severe liver damage. Three syndromes of VPA-induced liver injury
have been described, the most common of which is chronic progressive liver failure with
hepatic encephalopathy, followed by hyperammonemia [38]. Histological features of
hepatotoxicity due to VPA include micro- and macro-vesicular steatosis, hepatocellular
necrosis, cholestatic liver injury, and elevated serum transaminases. Jaundice, bleeding
disorders, and coma may develop, indicating progressive hepatic failure [39].

A specific metabolite of VPA, 2-propyl-4-pentenoic acid, is largely involved in the
hepatotoxicity induced by this drug, causing oxidative stress due to a rapid decrease in
glutathione stores and antioxidants, and by inhibition of fatty acid β-Ox. Hepatic steatosis
follows, which is also promoted by the inhibition of carnitine palmitoyltransferase I and
the induction of long-chain fatty acid absorption and TG synthesis [40]. In rats, VPA and its
major metabolites have also been shown to be potent inducers of microvesicular steatosis,
characterized by myeloid bodies, lipid vacuoles, and mitochondrial abnormalities [41].

Several metabolomic studies of VPA-induced toxicity in rodents have evaluated
metabolic changes in major organs, mainly using MS-based analytical techniques. Overall,
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their observations suggest that the toxic mechanism of VPA may involve oxidative stress,
inflammation, amino acid metabolism, lipid metabolism, and energy disorder [24].

In the present study, four doses of VPA were tested on ex ovo embryos, and the
two highest doses (200 and 400 µg) were kept for further analyses. Liver histopathology
revealed small, clear vesicles in all embryos, although more abundant when exposed to
VPA. First of all, it must be remembered that the liver of young birds is rich in lipids; indeed,
birds have the ability to store lipids in their liver [42]. In addition, developing embryos feed
on yolk, which is rich in proteins and lipids. Fatty acids are an essential energy substrate
for the embryo, undergoing β-Ox to produce acetyl-CoA to sustain Krebs cycle activity [43].
The increased incidence of these microvesicles in VPA-exposed embryos likely suggests the
onset of steatosis.

From a metabolic point of view, several discriminating metabolites have been iden-
tified using the metabolomic approach. Of paramount importance, the increased lipid
excretion (LDL/VLDL) in AF is noteworthy, which highlights the hepatic disruption of
lipid metabolism [44]. Since VPA shortcuts the fatty acid oxidation pathway using CoA,
endogenous lipids are no longer oxidized and accumulate [45]. This corroborates the
histopathological observation of microvesicles. At the same time, acetoacetate and BHB
levels decreased. The latter is produced through β-Ox and acts as an antioxidant in the
body by inhibiting the mitochondrial production of reactive oxygen species [46].

The accumulation of choline and betaine observed in the AF of embryos exposed to
VPA may indicate a disruption of the hepatic fat elimination pathway. In healthy conditions,
choline facilitates the export of hepatic TG in VLDLs [47]. In addition, a choline supplement
has been shown to reduce the development of fatty liver disease [48].

As mentioned earlier, VPA can also induce lipid peroxidation leading to oxidative
stress, which appears to be confirmed by decreased levels of glutamine, a glutathione
precursor [49]. Although an inter-individual variation in glutamine levels was noted
during development, there was a constant depletion of this metabolite when exposed
to VPA. In addition, the decrease lysine level, a carnitine precursor, could indicate a
disruption in fatty acid transport to the mitochondria. It has been shown that hepatocytes
exposed to VPA in culture accumulate diacylglycerol and TG while expressing carnitine
deficiency [22]. These early metabolic changes are of paramount importance because they
occur at a reversible stage of liver damage. L-carnitine and acylcarnitines are mitochondrial
biomarkers routinely used to screen for genetic disorders affecting fatty acid oxidation in
newborns. In addition, carnitine assays have also been used to identify individuals with
adverse reactions to various drugs, including VPA [50].

Intriguingly, some metabolites (i.e., leucine and isoleucine) were rapidly consumed
until complete depletion upon exposure to VPA. Particular attention was paid to leucine
in a targeted metabolomic study that evaluated the effects of VPA on biotinidase and
3-methylcrotonyl-CoA carboxylase (3MCC) activities [51]. In patients treated with VPA,
the drug was demonstrated to interfere with the activity of these enzymes by a potential
cumulative effect: direct inhibition of enzyme activity by valproyl-CoA and inhibition of
biotinidase by VPA and/or its metabolites [51].

Finally, the late increase in glucose concentration and the decrease in lactate levels
could indicate a shift in acetyl-CoA production from VPA oxidation rather than pyruvate
from glycolysis.

5. Conclusions

In recent years, biomedical and pharmaceutical research has attempted to limit the use
of laboratory animals in experimentation. The chick embryo presents itself as an alternative
model to mammals, feeling no pain until ED14 and having many benefits. In this study, we
investigated the potential of using the AF metabolome of ex ovo, growing chick embryo
as a predictive model of adverse drug reactions. As proof of concept, we opted for VPA-
induced hepatotoxicity, with a particular focus on steatosis. A metabolic signature could
thus be observed via 1H-NMR spectroscopy, testifying to significant alterations in lipid
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metabolism and transport and mitochondrial β-Ox of fatty acids (lipoproteins, acetoacetate,
BHB, choline, betaine, and lysine). Other metabolic changes were indicative of increased
oxidative stress (glutamine as glutathione precursor) and the inhibition of key liver enzymes
by VPA derivatives (leucine and isoleucine).

The perspectives of this work are numerous. The in ovo version of the model should
be developed to better mimic the physiological conditions. From a chemical risk assess-
ment point of view, other hepatotoxicants inducing steatosis should be tested to verify
whether the metabolic signature obtained with VPA is indeed specific to the steatosis
condition. Of course, hepatotoxins using other modes of action (MOAs), for example, CCl4
or acetaminophen, should also be tested in order to verify the ability of the approach to
discriminate between various MOAs.
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